Goals:

- I can write equations of parabolas in standard form.
- I can graph parabolas.

Equations of Parabolas

KeyConcept Equations of Parabolas			
Form of Equation	$y = a(x-h)^2 + k$	$x = a(y - k)^2 + h$	
Direction of Opening	upward if $a > 0$, downward if $a < 0$	right if <i>a</i> > 0, left if <i>a</i> < 0	
Vertex	(<i>h</i> , <i>k</i>)	(<i>h</i> , <i>k</i>)	
Axis of Symmetry	x = h	y = k	
Focus	$\left(h, k + \frac{1}{4a}\right)$	$\left(h+\frac{1}{4a},k\right)$	
Directrix	$y = k - \frac{1}{4a}$	$x = h - \frac{1}{4a}$	
Length of Latus Rectum	$\left \frac{1}{a}\right $ units	$\left \frac{1}{a}\right $ units	

Standard form: $y = a(x - h)^2 + k$ General form: $y = ax^2 + bx + c$ Name: _____

Example 1: Analyze the Equation of a Parabola

Write $y = 2x^2 - 12x + 6$ in standard form. Identify the vertex, axis of symmetry, and direction of opening of the parabola.

$y = 2x^2 - 12x + 6$	Original Equation	
$2(x^2-6x)+6$	Factor 2 from the <i>x</i> - and x^2 - terms.	
$2(x^2 - 6x +) + 6 - 2()$	Complete the square on the right side.	
$2(x^2 + (x + x)) + (x + 2(x))$	The O added when you complete the seven is multiplied by	
$2(x^2 - 6x + \) + 6 - 2(\)$	2.	
$2(x-3)^2 - 12$	Factor.	
*The number that goes in the box comes $\left(-\frac{6}{2}\right)^2$. The -6 came from the number next to the x in step 2.		
Always divide by 2 and always square the number.*		
a=		
h=		
k=		

The vertex is (_____, ____)

The equation of the axis of symmetry is _____.

The parabola opens ______.

This Example

Example 2: Find all pieces of the equation and graph the equation.

 $y + 2x^2 + 32 = -16x - 1$

Use completing the square to put the equation into STANDARD FORM.

a=_____

h=_____

k=_____

The vertex is (_____, ____)

The equation of the axis of symmetry is _____.

The parabola opens ______.

Formula:	This Example
Focus: $\left(h, k + \frac{1}{4a}\right)$	
Directrix: $y = k - \frac{1}{4a}$	
Length of Latus Rectum: $\left \frac{1}{a}\right $ units	