Goals:

- I can write equations of parabolas in standard form.
- I can graph parabolas.

Name: \qquad Mr Hartzler

Equations of Parabolas

KeyConcept Equations of Parabolas

Form of Equation	$y=a(x-h)^{2}+k$	$x=a(y-k)^{2}+h$
Direction of Opening	upward if $a>0$, downward if $a<0$	right if $a>0$, left if $a<0$
Vertex	(h, k)	(h, k)
Axis of Symmetry	$\left(h, k+\frac{1}{4 a}\right)$	$y=k$
Focus	$y=k-\frac{1}{4 a}$	$\left(h+\frac{1}{4 a}, k\right)$
Directrix	$\left\|\frac{1}{a}\right\|$ units	$x=h-\frac{1}{4 a}$
Length of Latus Rectum		$\left\|\frac{1}{a}\right\|$ units

Standard form: $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$
General form: $y=a x^{2}+b x+c$

Example 1: Analyze the Equation of a Parabola
Write $y=2 x^{2}-12 x+6$ in standard form. Identify the vertex, axis of symmetry, and direction of opening of the parabola.

$y=2 x^{2}-12 x+6$	Original Equation
$2\left(x^{2}-6 x\right)+6$	Factor 2 from the x - and x^{2} - terms.
$2\left(x^{2}-6 x+\square\right)+6-2(\square)$	Complete the square on the right side.
$2\left(x^{2}-6 x+\ldots\right)+6-2\left(_\right)$	The 9 added when you complete the square is multiplied by 2.
$2(x-3)^{2}-12$	Factor.

*The number that goes in the box comes $\left(-\frac{6}{2}\right)^{2}$. The -6 came from the number next to the x in step 2 .
Always divide by 2 and always square the number.*
$\mathrm{a}=$ \qquad
$\mathrm{h}=$ \qquad
$\mathrm{k}=$ \qquad

The vertex is (\qquad , \qquad)
The equation of the axis of symmetry is \qquad .
The parabola opens \qquad .

Formula:	This Example
Focus: $\left(h, k+\frac{1}{4 a}\right)$	
Directrix: $y=k-\frac{1}{4 a}$	
Length of Latus Rectum: $\left\|\frac{1}{a}\right\|$ units	

Example 2: Find all pieces of the equation and graph the equation.

$$
y+2 x^{2}+32=-16 x-1
$$

Use completing the square to put the equation into STANDARD FORM.
$\mathrm{a}=$ \qquad
$\mathrm{h}=$ \qquad
$\mathrm{k}=$ \qquad

The vertex is (\qquad , \qquad)

The equation of the axis of symmetry is \qquad .
The parabola opens \qquad .

Formula:	This Example
Focus: $\left(h, k+\frac{1}{4 a}\right)$	
Directrix: $y=k-\frac{1}{4 a}$	
Length of Latus Rectum: $\left\|\frac{1}{a}\right\|$ units	

