6-3 Additional Practice

Logarithms

Complete the table.

Exercise	Exponential Form	Logarithmic Form
1.	$4^3 = 64$	$\log_{4}64 = 3$
2.	$x = 10^{35}$	$\log x = 35$
3.	$6^{-3} = \frac{1}{216}$	$\log_6 \frac{1}{216} = -3$
4.	$\chi = \frac{e^8}{3}$	$\ln(3x)=8$
5.	$1000^0 = 1$	$\log_{1000}^{1} = 0$
6.	$5^{\frac{1}{2}} = \sqrt{5}$	$\log_5 \sqrt{5} = \frac{1}{2}$

Solve the equation for x. Show your work.

7.
$$2 + \log_5 x = 3$$

$$\log_5 x = 1$$

$$x = 5^{1}$$

$$x = 5$$

8.
$$4^{(x+2)} - 16 = 60$$

$$4^{(x+2)} = 76$$

$$\log_4^{76} = x + 2$$

$$x \approx 1.12$$

9.
$$2 \ln (x-5) = 25$$

$$ln(x-5) = 12.5$$

$$e^{12.5} = x - 5$$

$$x = e^{12.5} + 5$$

Evaluate each logarithmic expression.

10.
$$\log_5 \frac{1}{625}$$

13. In (-e)

16. Deshawn invests \$5,000 in a savings account that earns 6% annual interest, compounded continuously. How long will it take to double his money?

about 12 years

17. Compare the following values and determine which one is greater. Explain.

$$\log_{0.5} 6$$
 and

$$log_{0.5} 4$$

$$\log_{0.5} 6 \approx -2.58$$

$$\log_{0.5} 4 = -2$$

So
$$\log_{0.5}$$
4 is greater than $\log_{0.5}$ 6.