6-1 Additional Practice

Key Features of Exponential Functions
Graph each function. What are the key features of each graph (include domain, range, intercepts, asymptotes, and end behavior)?

1. $y=(0.3)^{x}$

Domain: all real numbers
Range: $y>0$
Asymptotes: X-axis
End behavior:
As $x \rightarrow \infty, y \rightarrow 0$.
As $x \rightarrow-\infty, y \rightarrow \infty$
2. $y=3^{x}$

Domain: all real numbers
Range: $y>0$ Intercepts: $(0,1)$
End behavior:
As $x \rightarrow \infty, y \rightarrow \infty$.
As $x \rightarrow-\infty, y \rightarrow 0$

Graph each function. Describe the graph in terms of transformations of the parent function $f(x)=2^{x}$. How do the asymptote and intercept of the given function compare to the asymptote and intercept of the parent function?
3. $g(x)=(0.5)^{x}$

When the sign of x changes,
 the function is reflected across the y-axis. The y-intercept does not change. The asymptote is still the x-axis.
4. $g(x)=-2^{x}$

When the sign of a changes, the function is reflected across the x-axis. The intercept changes from a to $-a$, which is 1 to $\mathbf{- 1}$. The asymptote does not change. It is still the x-axis.

Without graphing, determine whether the function represents exponential growth or exponential decay. What is the y-intercept?
5. $y=0.99\left(\frac{1}{3}\right)^{x}$ decay; 0.99
6. $y=20(1.75)^{x}$ growth; 20

Write an exponential function to model each situation. Find each amount after the specified time.
7. A population of $1,236,000$ grows 1.3% per year for 10 years.

$$
y=1,236,000(1.013)^{x} ; 1,406,413
$$

8. A population of 752,000 decreases 1.4% per year for 18 years.

$$
y=752,000(0.986)^{x} ; 583,448
$$

