6-5 Additional Practice

Properties of Logarithms

Use the properties of logarithms to expand each expression.

1. $\ln \left(a^{4} b^{7}\right)$
2. $\ln \left(x^{4}\right)$
3. $\log _{7}\left(a^{2} b^{3} c\right)$
4. $\log \left(\frac{7}{8}\right)^{x}$
5. $\log _{5}\left(\frac{x}{7 y}\right)$
6. $\log \left(\frac{a}{b^{2}}\right)$

Use the properties of logarithms to write each expression as a single logarithm.
7. $3 \log 4-2 \log 7$
8. $2 \ln 4+2 \ln 5$
9. $2 \log _{4} a+5 \log _{4} b$
10. $\log 4+\log 5+\log 7$
11. $2 \log 2+5 \log (2 x)$
12. $4 \log _{6} a-7 \log _{6} b$
13. Use the formula $\mathrm{pH}=\log \left(\frac{1}{\left[H^{+}\right]}\right)$to write an expression for the concentration of hydrogen ions in a liter of a sports drink that has a pH level of 2.5. What is the concentration of hydrogen ions?

Use the Change of Base Formula to evaluate each logarithm. Round to the nearest thousandth, if necessary.
14. $\log _{2} 10$
15. $\log _{5} 7$
16. In e
17. $\log _{7} 9$
18. $\log _{5} 13$
19. $\log _{3} 9$

Use the Change of Base Formula to solve each equation for x. Give an exact solution as a logarithm and an approximate solution rounded to the nearest thousandth.
20. $5^{x}=7$
21. $4^{x}=20$
22. $7^{x}=42$
23. $4^{x}=77$
24. $8^{x}=50$
25. $3^{x}=16$
26. Explain why $\frac{2}{3} \neq \frac{\ln 2}{\ln 3}$.

