Name: \qquad Operations on Functions
Past: You have performed arithmetic operations with polynomials.
Present: You can also use addition, subtraction, multiplication and division with functions.

KeyConcept Operations on Functions		
Operation	Definition	

Let f(x)=2 x and g(x)=-x+5 .\end{array}\right]\)| $2 x+(-x+5)=x+5$ | |
| :--- | :---: |
| Addition | $(f+g)(x)=f(x)+g(x)$ |
| Subtraction | $(f-g)(x)=f(x)-g(x)$ |
| Multiplication | $(f \cdot g)(x)=f(x) \cdot g(x)$ |
| Division | $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$ |

Example 1: Add and Subtract Functions
Given $f(x)=x^{2}-4$ and $g(x)=2 x+1$, find each function.
a. $(f+g)(x)$
b. $(f+g)(2)$
c. $(f-g)(x)$
d. $(f-g)(3)$

Example 2: Multiply and Divide Functions

Given $f(x)=x^{2}+7 x+12$ and $g(x)=3 x-4$, find each function.
a. $(f \cdot g)(x)$
b. $\left(\frac{f}{g}\right)(x)$

KeyConcept Composition of Functions

Words Suppose f and g are functions such that the range of g is a subset of the domain of f. Then the composition function $f \circ g$ can be described by

$$
[f \circ g](x)=f[g(x)] .
$$

Example 3: Composition of Functions given: $\boldsymbol{f}(\boldsymbol{x})=\mathbf{3 n}+\mathbf{2}$ and $\boldsymbol{g}(\boldsymbol{x})=\mathbf{2} \boldsymbol{n}^{\mathbf{2}}+\mathbf{5}$
a. $g(f(2))$
b. $(f \circ g)(x)$

