Name:

Algebra II Operations on Functions

Past: You have performed arithmetic operations with polynomials.

KeyConcept Operations on Functions		
Operation	Definition	Example Let $f(x) = 2x$ and $g(x) = -x + 5$.
Addition	(f+g)(x)=f(x)+g(x)	2x + (-x + 5) = x + 5
Subtraction	(f-g)(x) = f(x) - g(x)	2x - (-x + 5) = 3x - 5
Multiplication	$(f \cdot g)(x) = f(x) \cdot g(x)$	$2x(-x+5) = -2x^2 + 10x$
Division	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$	$\frac{2x}{-x+5}, x \neq 5$

Present: You can also use addition, subtraction, multiplication and division with functions.

Example 1: Add and Subtract Functions

Given $f(x) = x^2 - 4$ and g(x) = 2x + 1, find each function.

a.
$$(f + g)(x)$$

b. (f + g)(2)

c. (f - g)(x)

d. (f - g)(3)

Example 2: Multiply and Divide Functions

Given $f(x) = x^2 + 7x + 12$ and g(x) = 3x - 4, find each function. a. $(f \cdot g)(x)$

b.
$$\left(\frac{f}{g}\right)(x)$$

Example 3: Composition of Functions given: f(x) = 3n + 2 and $g(x) = 2n^2 + 5$

a. g(f(2))

b. $(f \circ g)(x)$