\qquad

Algebra II

5.2 Dividing Polynomials

Goals:

- I can divide polynomials using long division.

Long Division (Old School Examples):
Question: $\frac{1472}{3}$
Solution:

Divide a Polynomial by a Monomial

Work	Explanation
1. Simplify $\frac{6 x^{4} y^{3}+12 x^{3} y^{2}-18 x^{2} y}{3 x y}$ Answer:	- Split up fractions - Divide each section - Quotient of powers - Zero Power Property
2. Simplify $\frac{20 c^{4} d^{2} f-16 c d f^{2}+4 c d f}{4 c d f}$ Answer: Answer: $5 c^{3} d-4 f+1$	

HW:

1. $\left(4 x y^{2}-2 x y+2 x^{2} y\right)(x y)^{-1}$
2. $\frac{9 n^{3} p^{3}-18 n^{2} p^{2}+21 n^{2} p^{3}}{3 n^{2} p^{2}}$

Name: \qquad

Using the Division Algorithm
3. Use long division to find $\left(x^{2}+3 x-40\right) \div(x-5)$

Answer:
4. Use long division to find each quotient. $\left(x^{2}+7 x-30\right) \div(x-3)$

HW:
3. $\left(x^{2}-6 x-20\right) \div(x+2)$
4. $\left(3 z^{4}-6 z^{3}-9 z^{2}+3 z-6\right) \div(z+3)$

