Name:

Algebra II *n*th Roots and Simplifying Radicals

Simplify Radicals				
Powers	Factors	Words	Roots	
$x^3 = 64$	$4 \cdot 4 \cdot 4 = 64$	4 is a cube root of 64.	$\sqrt[3]{64} = 4$	
$x^4 = 625$	$5 \cdot 5 \cdot 5 \cdot 5 = 625$	5 is a fourth root of 625.	$\sqrt[4]{625} = 5$	
$x^5 = 32$	$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$	2 is a fifth root of 2.	$\sqrt[5]{32} = 2$	
$a^n = b$	$a \cdot a \cdot a \cdot \ldots \cdot a = b$	<i>a</i> is a <i>n</i> th root of <i>b</i> .	$\sqrt[n]{b} = a$	

*Note: For even roots (n is an even number) then there are two roots. There is a positive and a negative root.

Principal root—the positive root if there are two roots

Example 1: Finding roots with just numbers

a.	$\sqrt{16}$	b. ∛ <mark>27</mark>
a.	$\sqrt{16}$	b. ∛2′

Example 2: Finding roots with numbers and letters

a. $\sqrt{16y^4}$ c. $\sqrt[5]{243a^{20}b^{25}}$

b.
$$\pm \sqrt{(x^2 - 6)^8}$$
 d. $-\sqrt{-16x^4y^8}$

HOMEWORK

1) $\pm \sqrt{121x^4y^{16}}$

Name: _____

Algebra II CP Monday 1/30/2017

2)
$$\pm \sqrt{225a^{16}b^{36}}$$
 8) $\sqrt{(a^2 + 4a)^{12}}$

3)
$$-\sqrt{16c^4d^2}$$
 9) $\sqrt[3]{8a^6b^{12}}$

4)
$$\sqrt{81a^{16}b^{20}c^{12}}$$
 10) $\sqrt[3]{27x^6y^9}$

5)
$$\sqrt{400x632 y^{40}}$$
 11) $\sqrt[3]{64b^3c^9}$

6)
$$\sqrt{(x+15)^4}$$
 12) $\sqrt[4]{16a^4b^8}$

7)
$$\sqrt{(x+6)^{16}}$$