Name: \qquad
nth Roots and Simplifying Radicals
Simplify Radicals

Powers	Factors	Words	Roots
$x^{3}=64$	$4 \cdot 4 \cdot 4=64$	4 is a cube root of 64.	$\sqrt[3]{64}=4$
$x^{4}=625$	$5 \cdot 5 \cdot 5 \cdot 5=625$	5 is a fourth root of 625.	$\sqrt[4]{625}=5$
$x^{5}=32$	$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$	2 is a fifth root of 2.	$\sqrt[5]{32}=2$
$a^{n}=b$	$a \cdot a \cdot a \cdot \ldots \cdot a=b$	a is a nth root of b.	$\sqrt[n]{b}=a$

*Note: For even roots (n is an even number) then there are two roots. There is a positive and a negative root.
Principal root - the positive root if there are two roots

Example 1: Finding roots with just numbers
a. $\sqrt{16}$
b. $\sqrt[3]{27}$

Example 2: Finding roots with numbers and letters
a. $\sqrt{16 y^{4}}$
b. $\pm \sqrt{\left(x^{2}-6\right)^{8}}$
c. $\sqrt[5]{243 a^{20} b^{25}}$
d. $-\sqrt{-16 x^{4} y^{8}}$

HOMEWORK

1) $\pm \sqrt{121 x^{4} y^{16}}$
2) $\pm \sqrt{225 a^{16} b^{36}}$
3) $\sqrt{\left(a^{2}+4 a\right)^{12}}$
4) $-\sqrt{16 c^{4} d^{2}}$
5) $\sqrt[3]{8 a^{6} b^{12}}$
6) $\sqrt{81 a^{16} b^{20} c^{12}}$
7) $\sqrt[3]{27 x^{6} y^{9}}$
8) $\sqrt{400 x 632 y^{40}}$
9) $\sqrt[3]{64 b^{3} c^{9}}$
10) $\sqrt{(x+15)^{4}}$
11) $\sqrt[4]{16 a^{4} b^{8}}$
12) $\sqrt{(x+6)^{16}}$
