\qquad

Algebra 2
5.1 Operations with Polynomials (Day 1)

Notes

Property	Definition	Examples
Product of Powers	$x^{a} \cdot x^{b}=x^{a+b}$	$3^{2} \cdot 3^{4}=3^{2+4}$ or 3^{6}
Quotient of Powers	$\frac{x^{a}}{x^{b}}=x^{a-b}, x \neq 0$	$\frac{9^{5}}{9^{2}}=9^{5-2}$ or 9^{3}
Negative Exponent	$x^{-a}=\frac{1}{x^{a}}$ and $\frac{1}{x^{-a}}=x^{a}, x \neq 0$	$3^{-5}=\frac{1}{3^{5}}$
Power of a Power	$\left(x^{a}\right)^{b}=x^{a b}$	$\left(3^{3}\right)^{2}=3^{3 \cdot 2}$
Power of a Product	$(x y)^{a}=x^{a} y^{a}$	$(2 k)^{4}$
$=2^{4} k^{4}$ or $16 k^{4}$		
Power of a Quotient	$\left(\frac{x}{y}\right)^{a}=\frac{x^{a}}{y^{a}}, y \neq 0$, and $\left(\frac{x}{y}\right)^{-a}=\left(\frac{y}{x}\right)^{a}$ or $\frac{y^{a}}{x^{a}}, x \neq 0, y \neq 0$	$\left(\frac{x}{y}\right)^{2}=\frac{x^{2}}{y^{2}}$
Zero Power	$x^{0}=1, x \neq 0$	$7^{0}=1$

An expression is in simplified form when:

- There are no powers of powers,
- Each base appears exactly once,
- All fractions are in simplest form,
- There are no negative exponents

Example 1: Simplify each expression. Assume that no variable equals 0 .

$$
\left(2 a^{-2}\right)\left(3 a^{3} b^{2}\right)\left(c^{-2}\right)
$$

Name:

Example 2: Simplify each expression. Assume that no variable equals 0 .

$$
\frac{q^{2} r^{4}}{q^{7} r^{3}}
$$

Homework:
Simplify. Assume that no variable equals 0 .

1. $\left(2 a^{3} b^{-2}\right)\left(-4 a^{2} b^{4}\right)$
2. $\frac{a^{3} n^{7}}{a n^{4}}$
3. $\frac{12 x^{4} y^{2}}{2 x y^{5}}$
4. $\frac{-y^{3} z^{5}}{y^{2} z^{3}}$
5. $\left(\frac{2 a^{2}}{3 b}\right)^{3}$
6. $\frac{-7 x^{5} y^{5} z^{4}}{21 x^{7} y^{5} z^{2}}$
7. $\left(6 g^{5} h^{-4}\right)^{3}$
8. $\frac{9 z^{7} b^{5} c^{5}}{18 a^{5} b^{9} c^{3}}$
9. $\left(5 x^{3} y^{-5}\right)\left(4 x y^{3}\right)$
10. $\left(n^{5}\right)^{4}$
11. $\left(-2 b^{3} c\right)\left(4 b^{2} c^{2}\right)$
12. $\left(z^{3}\right)^{6}$
